绑定手机号
获取验证码
确认绑定
提问
0/255
提问
订阅开课提醒需关注服务号
回答成功
知道了
扫码关注智猩猩服务号登录
请使用微信扫描二维码
扫描二维码分享给微信好友
您已订阅成功,有新课程,我们将第一时间提醒您。
知道了
发送提问成功
回答可在
“我的——我的提问”中查看
知道了
失败
欢迎来智东西
关注我们
智东西
车东西
芯东西
智猩猩
应对常见噪声的高鲁棒性点云分类模型
智猩猩AI新青年讲座 2022/07/13 19:00:00
课程讲师
任嘉玮 南洋理工大学 S-Lab在读博士

导师是刘子纬助理教授,以一作身份发表四篇顶会论文,曾获得COCO 2019 全景分割挑战冠军,目前研究兴趣是开放世界学习与3D表征学习。

任嘉玮
南洋理工大学 S-Lab在读博士

导师是刘子纬助理教授,以一作身份发表四篇顶会论文,曾获得COCO 2019 全景分割挑战冠军,目前研究兴趣是开放世界学习与3D表征学习。

课程提纲
  • 常见点云分类模型中的鲁棒性问题
  • 基于真实世界3D噪声源的全新测试集ModelNet-C
  • 高鲁棒性的点云分类模型RPC
  • 面向3D感知的高鲁棒性模型设计技巧
课程简介

目前,大部分常见的点云分类模型都是在较为理想的数据上进行训练的,而在真实世界中,由于场景的复杂性、传感器失准以及数据处理偏差等原因,点云数据不可避免地受到噪音的影响。与此同时,点云数据往往被应用于与安全息息相关的应用场景,如自动驾驶和医疗诊断等等,点云模型的鲁棒性尤为重要。

现有对于点云分类模型的鲁棒性研究主要集中于三点:在特定的数据上验证鲁棒性、在模拟至真实场景下验证鲁棒性和在对抗攻击场景下验证鲁棒性。尽管已有工作对点云分类模型的鲁棒性进行了探究,但到目前为止还缺乏一个标准且全面的基线。

基于此,南洋理工大学在读博士任嘉玮等人提出了首个用于点云分类和部件分割的鲁棒性测试基线PointCloud-C,并根据PointCloud-C构建了来自真实世界3D噪声源的全新测试集ModelNet-C。同时,他们设计了一个高鲁棒性的点云分类模型RPC,并分别从结构、训练和数据增广三方面给出了面向3D感知的高鲁棒性模型设计技巧。大量的实验证明,这种鲁棒的点云分类模型RPC和设计技巧都能显著地提高点云分类对于真实世界点云噪音的鲁棒性。

7月13日晚7点,「AI新青年讲座」第136讲邀请到南洋理工大学S-Lab在读博士任嘉玮参与,主讲《应对常见噪声的高鲁棒性点云分类模型》。

精彩问答
提问
提问
目前还没有问题,可以点击右侧的“提问按钮”提问
更多问题...